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Summary. Diverse forms of opposition are already existent virtually everywhere around us but
the nature and significance of oppositeness is well understood only in specific contexts within the
fields of philosophy, linguistics, psychology, logic and physics. The interplay between entities
and opposite entities is apparently fundamental for maintaining universal balance. However, it
seems that there is a gap regarding oppositional thinking in engineering, mathematics and com-
puter science. Although many opposition-based techniques exist in these fields, the oppositional
properties they employ are not usually directly studied. A better understanding of opposition
could potentially establish new search, reasoning, optimization and learning schemes with a wide
range of applications. For instance, improving convergence rate for hyperdimensional problems
could be improved through the use of oppositional strategies.

A large number of problems in engineering and science cannot be approached with conven-
tional schemes and are generally handled with intelligent techniques such as evolutionary, neu-
ral, reinforcing and swarm-based techniques. These methodologies, however, suffer from high
computational costs. In this work, the outlines of opposition-based computing, a proposed frame-
work for computational intelligence, will be introduced. The underlying idea is simultaneous
consideration of guess and opposite guess, estimate and opposite estimate, viewpoint and oppo-
site viewpoint and so on in order to make better decisions in a shorter time, something that all
aforementioned techniques could benefit from. The goal is to better understand the role of op-
position within a computational intelligence context with the intention of improving existing or
developing more powerful and robust approaches to handle complex problems.

Due to its diversity, it is difficult, if not impossible, to uniquely and universally define the
nature and the scope of what we call opposition. However, there is no doubt that we need a
mathematical formalism if we are going to, at least to some degree, exploit the oppositional
relationships in real-world systems. Hence, we attempt to establish a generic framework for com-
puting with opposites in this chapter, a framework which may not mathematically capture the
very essence of oppositeness in all systems accurately but it will be, as we hope, a point of depar-
ture for moving toward opposition-based computing. The ideas put forward in this chapter may
not be shared by all those who work on some aspect of opposition (and usually without labeling
it opposition), nevertheless, we believe that this framework can be useful for understanding and
employing opposition.

2.1 Introduction

The idea of explicitly and consiously using opposition in machine intelligence was
introduced in [21]. The paper contained very basic definitions and three application
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examples providing preliminary results for genetic algorithms, reinforcement learning
and neural networks. The main scheme proposed was to not only to look at chromo-
somes, actions and weights but simultaneously consider anti-chromosomes, counter-
actions and opposite weights. The paper argued that by considering these opposites and
by simultaneous analysis of quantities and their opposite quantities we can accelerate
the task in focus by increasing the chances of discovering the basins of attraction for
optimal (or high quality) solutions.

In this chapter, the framework of opposition-based computing (OBC) will be pro-
vided, new definitions will be established and a rudimentary classification of opposi-
tional concepts in computational intelligence will be provided. In section 2.2 the nature
of opposition will be briefly discussed. Section 2.3 provides introductory definitions
which we propose to be employed to understand opposition. We also show an example
based on low-discrepancy sequences, of the type of improvements opposition can po-
tentially deliver. In Section 2.4 we formally describe opposition-based computing using
our definitions from Section 2.3. In section 2.5 a rough guideline or classification of
OBC algorithms is provided. Section 2.6 summarizes the work with some conclusions.

2.2 What Is Opposition?

According to the American Heritage Dictionary opposite is defined as, “being the other
of two complementary or mutually exclusive things” and oppositional as “placement
opposite to or in contrast with another” [1]. Generalizing these definitions we can in-
fer that opposites are two complementary elements of some concept or class of ob-
jects/numbers/abstractions, and the relationship which defines their complementarity is
the notion of opposition1. More formally, two elements c1, c2 ∈ C are considered op-
posite relative to some mapping ϕ : C → C, where ϕ is a one-to-one function and C is
some non-empty set of concepts.

The class C can represent any form of concept, whether it be a physical entity (i.e. a
state or estimate) or more abstract notion (i.e a hypothesis or viewpoint). The mapping
between the opposite elements is also very robust, indeed the very notion of opposite
is defined relative to this mapping, which can essentially be any function determin-
ing which entities are opposites. Therefore, changing ϕ consequently changes how the
concepts are percieved.

Consider the following two simple situations, letting C be a continuous interval be-
tween [0, 1] and X ∈ C : .

1. Let ϕ(X) = (X + 0.5)%1. The modulo operator guarantees a constant distance of
0.5 between X = x and its opposite x̆ = ϕ(x)2.

2. Let ϕ(X) = 1 − X . Under this definition as X = x → 0.5, x̆ → 0.5 (the center
of the search interval). Therefore ϕ is less concerned with physical distance within
the natural ordering of C and more related to similarity.

These situations highlight an important facet of oppositional thinking. Namely, the
natural ordering of concepts from class C is not necesarily the only manner in which

1 See the introduction, Chapter 1, for a more general motivation on opposition.
2 We denote the opposite of x with x̆.
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opposites can be defined. More often than not the problem definition may indicate or
hint towards something more appropriate. In fact, the second scenario contains a para-
dox in that if x = 0.5 then x̆ = 0.5, leaving a debate as to whether a concept can be
its own opposite or whether it is possible for the concept to not have an opposite at all3.
This situation must also be appropriately addressed through the definition of ϕ.

The above examples were restricted to a single dimensional problem. A logical next
step is to examine how oppositional thinking changes as the problem dimensionality
increases. Let C =< c1, c2, . . . , cn > be an arbitrary concept in C and ci be the ith

dimensional component of the n-dimensional system. We can then define Φ(C) =<
ϕ1(c1), ϕ2(c2), . . . , ϕn(cn) > where ϕi defines opposition solely for dimension i and
Φ is the resultant mapping over all n single dimension mappings. That is, the opposite of
a multi-dimensional system is defined with respect to the opposite of each component.
Also, as with the single dimension situation, Φ must be a one-to-one function.

Let S be an arbitrarily selected subset of integers from {1, 2, . . . , n}, corresponding
to one of {ϕ1, ϕ2, . . . , ϕn}. In total there exist 2n possible subsets, of which only one
has all n integers (denoted S∗). Then, for every S we can calculate

τ(S) =
|S|
|S∗| =

|S|
n

, (2.1)

to represent the degree of opposition between the concepts represented by S and the true
opposite S∗, where |·| is the cardinality of the respective set. It is important to notice that
in this case each component is given equal weighting, meaning that there does not exist
a component which contributes more “oppisitional tendency” than any other (i.e. each
dimension of the problem is equally important). However, allowing unequal weighting
allows for greater flexibility and freedom when employing opposition in computational
intelligence (as will be shown throughout this book).

By introducing the idea of varying degrees of oppositeness we also can ask whether
opposition is a static or dynamic concept. This refers to the redefinition of opposition
as undesirable elements of C are excluded through a search, optimization or learning
process (i.e. |C| can vary at each iteration). We denote a system with a dynamic concept
of opposition as Φt, indicating there exists a time component to the mapping (where
each component is also time varying and denoted by ϕi

t).
Exploiting symmetry is in many cases a good example for incorporating opposition

within learning and search operations. In its essence, considering oppositional rela-
tionships is nothing but integration of a-priori knowledge. There exist a large num-
ber of works on using a-priori or expert knowledge in computational intelligence, why
then, one may ask, should we concern ourselves with opposition since we are inte-
grating a-priori knowledge anyway? The knowledge of oppositeness in context of a
given problem is a very special type of a-priori knowledge, which, if we comprehend
the oppositional relationships between quantities and abstractions, its processing bears
virtually no uncertainty. If, for instance, we know that the quantity/abstaction X has
a high evaluation in context of the problem in focus, then its opposite X̆ can be confi-
dently dismissed as delivering a low evaluation. By recognizing oppositional entities we

3 This is a very old debate in logic and philosophy which everybody may know via the example
“is the glass half full or half empty?”.
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acquire a new type of a-priori knowledge that, if processed as general, non-oppositional
knowledge, its contributions to problem solving remain widely unexploited.

A final major issue to address is whether opposite concepts are required to have an
antagonistic nature (mutually exclusive), or can they interact in a constructive manner
(balance maintenance). Is the system constantly deciding between which of two con-
cepts is most desirable or are these two concepts used together to produce a more desir-
able system? Furthermore, is this interaction a constant or dynamic phenomena? That
is, can competitive and cooperative relationships exist between opposites at different
times? Most likely antipodal answers to these questions are true for different problem
settings.

Most of the ideas behind these notions can be found scattered in various research
areas. Chapters 3 and 4 further discuss some of the statistical and logical motivations
and interpretations of opposition, respectively.

2.3 Computing with Opposites

In this section we attempt to establish a generic framework for computing with
opposites which will be used in subsequent sections when discussing opposition-based
computing. We have left the definitions abstract to provide flexibility and robustness in
their practical application. First we provide important definitions followed by a simple
example of using the outlined concepts.

2.3.1 Formal Framework

In this subsection we will provide abstract definitions pertaining to type-I and type-II
opposition. For each definition we discuss its implications and provide examples where
appropriate.

Definition 1 (Type-I Opposition Mapping). Any one-to-one mapping function,
Φ: C → C, which defines an oppositional relationship between two unique4 elements
C1, C2 of concept class C is a type-I opposition mapping. Furthermore, the relationship
is symmetric in that if Φ(C1) = C2, then Φ(C2) = C1.

This mapping is understood to define the opposite nature between C1, C2 with respect
to the problem and/or goal of employing the relationship. In some cases this may be
directly related to solving the problem at at hand (i.e. with respect to minimizing an
evaluation function). Another possible use is to implcitly aid in solving the problem,
for example to provide a more diverse range of solutions.

Definition 2 (Type-I Opposition). Let C ∈ C be a concept in n-dimensional space and
let Φ: C → C be an opposition mapping function. Then, the type-I opposite concept is
determined by C̆ = Φ(C).

4 The assumption is that an element cannot be its own opposite, although it is technically possi-
ble to relax this condition.
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For convenience, we often omit the explicit reliance on Φ. For example, if x̆i =
Φ(xi) = ai + bi − xi, we simply write this as x̆i = ai + bi − xi. Analogously, we
can also denote type-I opposites as x̆i = −xi or x̆i = 1 − xi depending on the range of
the universe of discourse.

Type-I opposites capture linear opposition and are simple and easy to calculate. For
instance, if we regard Age as an integer set A = {0, 1, . . . , 100} and define Φ(age) =
100− age, then the opposite of a 10 year old child is an 90 year old adult, where age is
some random element of A (the sex could provide additional oppositional attributes).

Definition 3 (Type-I Super-Opposition). Let C be an n-dimensional concept set C.
Then, all points C̆s are type-I super-opposite of C when d(C̆s, C) > d(C̆, C) for some
distance function d(·, ·).

Type-I super-opposition plays a role in systems where the opposite is defined such that
|C̆s| ≥ 1 corresponding to the existence of at least one point further in distance from
concept C, but not with respect to logical meaning. Consider Φ(X) = −X where
−∞ < X < ∞. For X = x = 0.1, x̆ = −0.1, but there exists an infinite number of
values further from x than its opposite x̆. These extreme (or super) points are in super-
opposition to C. Note that |C̆s| ≥ 0 for any Φ (i.e. super-opposition is not required
to exist). For instance, if we regard the age as an integer set A = {0, 1, . . . , 100},
then the super-opposites of a 10 years old are all those members with an age above 90
years. On the other hand, consider an adult of exactly 100 years; his/her opposite is
an unborn child (exactly equal to age 0). So in this case when age = 100 there is no
super-opposition (i.e. |C̆s| = 0).

As another example of super-opposition, let C = R and use x̆ = a + b − x as the
relationship between opposites. Then for x ∈ [a, b]

x̆s ∈

⎧⎪⎨
⎪⎩

[a, x̆) for x > (a + b)/2
[a, b] − {x} for x = (a + b)/2
(x̆, b] for x < (a + b)/2

(2.2)

represents the corresponding super-oppostion relationship. In other words, for x = a+b
2

the entire interval except x becomes the super-opposite of x. This means that for x →
a+b
2 the type-I opposites converge to the same value and the range of super-opposite

values increases. Using our above child/adult age example, then a member with an age
of 50 years has all elements �= 50 as its super-opposites, including the 10 year old and
the 90 year old, simultaneously.

Definition 4 (Type-I Quasi-Opposition). Let C be an n-dimensional concept in set C.
Then, all points C̆q are type-I quasi-opposite of C when d(C̆q, C) < d(C̆, C), for some
distance function d(·, ·).

Similar to super-opposition, quasi-opposition will not enter into all systems. For exam-
ple, consider a binary problem where each xi ∈ {0, 1}. In this case, neither quasi- nor
super-opposition are of any relevance. However, for a more practical situation consider
the single dimensional hypothecial case where x̆ = a + b − x, then
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x̆q ∈

⎧⎪⎨
⎪⎩

(x̆, x̆ + min[d(a, x̆), d(x̆, c)]) for x > (a + b)/2
∅ for x = (a + b)/2
(x̆ − min[d(b, x̆), d(x̆, c)], x̆) for x < (a + b)/2

(2.3)

defines the set of quasi-oppositional values with c = a+b
2 .

Whereas the super-opposition is naturally bounded by the extremes of the universe
of discourse, the quasi-opposites can be bounded differently. A convenient way is to
mirror the same distance that the opposite has to the closest interval limit in order
to set a lower bound for quasi-opposites. This is illustrated in Figure 2.1. Of course,
one could define a degree of quasi-oppositeness and determine the slope of gradual in-
crease/decrease based on problem specifications. This, however, will fall into the scope
of similarity/dissimilarity measures, which has been extensively investigated for many
other research fields [5,10,19,20].

We have defined how type-I opposition deals with the relationship between concepts
based on features of the concepts without regard to the actual quality of the concept.
Although, there does exist a relationship between these two cases, they are at heart, dif-
ferent. Quality is measured with respect to the question being asked of the opposites,in
contrast to the physical structure of the two concepts. We can summarize that type-I
opposition models/captures oppositional attributes in a linear or almost linear fashion,
is easy to compute and, most likely, can be regarded as an approximation of the real
opposites (type-II opposition) for non-linear problems.

Definition 5 (Type-II Opposition Mapping). Any one-to-many function Υ: f(C) →
f(C) which defines an oppositional relationship between the evaluation f of a concept

x

x̆I

quasi-opposites

super-opposites

d

d

Fig. 2.1. Simplified representation of quasi- and super-opposites in a 2-dimensional space. The
distance d of the type-I opposite x̆I from the closest corner can be used to define the quasi-
and super-oppositional regions. The boundary between these two region (bolded dashed circle
segment) can be regarded quasi-opposite for a strict interpretation.

Administrator
Highlight
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C ∈ C to a set S of all other evaluations of concepts also in C such that C ∈ Υ(s)
∀s ∈ S.

The focus on evaluation f of concepts, instead of focusing on the concepts themselves,
leads to loss of information regarding the true relationship of opposite concepts (i.e.
type-II is a phenotypical relationship as opposed to a structural one). Given some con-
cept C and its associated evaluation f(C), the type-II opposition mapping will return a
set of opposite evaluations which can then lead to concepts (although the specific true
type-I opposite concept cannot be determined with certainty). Here, Υ returns a set be-
cause f is not restricted to any functional form. For example, if f is a periodic function
such as the sine wave defined over [−2π, 2π], then for any f(x) there will be at least
two opposites since a horizontal plane will cut the wave twice at each of −3/2π, 1/2π
and −1/2π, 3/2π, respectively (5 points at −2π, −π, 0, π, 2π and will cut the wave at
4 points elsewhere).

Definition 6 (Type-II Opposition). Let concept C be in set C and let Υ: f(C) → f(C)
be a type-II opposition mapping where f is a performance function (such as error, cost,
fitness, reward, etc.) Then, the set of type-II opposites of C are completely defined by
Υ. Type-II opposition can also be coined non-linear opposition.

An example of type-II opposition is in the following. Let y = f(x1, x2, · · · , xn) ∈ R

be an arbitrary function where y ∈ [ymin, ymax] are the extreme values of f . Then,
for every point C = (c1, c2, · · · , cn) we can define the type-II opposite point C̆ =
(c̆1, c̆2, · · · , c̆n) according to

C̆ = Υ(C) = {c | y̆ = ymin + ymax − y}. (2.4)

We can assume that f is unknown, but that ymin and ymax are given or can be reasonably
estimated.

Alternatively, at sample t we may consider a type-II opposite with respect to t − 1
previous samples. Using Equation (2.4), this temporal type-II opposite can be calculated
according to

c̆i(t) =
{

c | y̆(t) = min
j=1,...,t

y(j) + max
j=1,...,t

y(j) − y(t)
}

. (2.5)

Figure 2.2 depicts the difference between type-I and type-II opposition for a simple case
where we are trying to find the extremes of a non-linear function. As apparent, type-II
opposition can provide more reliable information.

In general, a type-II opposition scenario implies a deep understanding of the tartget
concept, which is typically difficult to attain for real-world applications. However, type-
II opposition mappings can be approximated online as the learning/search is in progress.
We term this situation opposition mining.

Definition 7 (Opposition Mining). Let C∗ ∈ C be a target concept and Υ a type-II
opposition mapping. Then, opposition mining refers to the online discovery of Ῡ, which
represents an approximation to Υ.



18 H.R. Tizhoosh, M. Ventresca, and S. Rahnamayan

x̆I

x

x̆II

ymin

ymax

xmin xmax

f(x)

f(x̆I)

f(x̆II)

Fig. 2.2. Type-I versus type-II opposition. A nonlinear function f : x → [ymin, ymax] has
the value f(x) at the position x. The type-I opposite x̆I = xmax + xmin − x generates the
function value f(x̆I). The type-II opposite x̆II , however, corresponds to the real opposite value
f(x̆II) = f̆(x) = ymax + ymin − f(x). Evidently, f(x̆I) → f(x̆II) for a linear or almost
linear f .

The definitions for super- and quasi-oppostion can also be extended to the type-II do-
main, although we have not provided definitions here. Similarily, we can discuss the
notion of a degree of opposition for both type-I and type-II scenarios (we will assume,
without loss of generality a type-I situation).

Definition 8 (Degree of Opposition). Let Φ be a type-I opposition mapping and
C1, C2 ∈ C arbitrary concepts such that C1 �= Φ(C2). Then, the relationship between
C1 and C2 is not opposite, but can be described as partial opposition, determined by a
function τ : C1, C2 → [0, 1]. As τ(C1, C2) approaches 1 the two concepts are closer to
being opposite of each other.

So, it is possible to compare elements C1, C2 ∈ C within the framework of opposition.
Calculating the degree of opposition τ(C1, C2) will depend on how concepts are repre-
sented for the problem at hand. Nevertheless, this definition allows for the explanation
of the relationship between elements that are not truly opposite. For example, consider
the statements

s1 = “Everybody likes apples”

s2 = “Nobody likes apples”

s3 = “Some people like apples”

s4 = “Some people do not like apples”

We can describe the relationship between these concepts with respect to s1 using the

degree of opposition. Doing so, we can determine that τ(s1, s4) < τ(s1, s3) <
τ(s1, s2), where the exact value of each relationship is ignored but is related to the
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logical meaning of the statements. It is important to distinguish between the degree of
opposition and super- and quasi-opposition. The latter relationships are related to phys-
ical distance whereas the former is concerned with the logical relationship. In some
cases these may overlap, and others there may be no such similarity.

As an example of how to combine the degree of opposition with a temporal situation
as described above, assume only the evaluation function g(X) is available. This is ac-
complished by adding the temporal variable t to the definition of the τ function. Then,
using the same scenario as Equation (2.5) the type-II temporal opposite for variables
X1 and X2 could then be computed according to

τ(X1 = x1, X2 = x2, t) =
|g(x1) − g(x2)|

max
j=1,...,t

g(xj) − min
j=1,...,t

g(xj)
∈ [0, 1]. (2.6)

A more practical example of employing the degree of opposition can be found in [22],
where opposite actions were utilized for a reinforcement learning (RL) algorithm. In
order to make additional updates to the Q matrix for the Q-learning algorithm, an RL
agent has to know how to find opposite actions and opposite states. Clearly, this is
an application-dependant problem although in some applications such as control and
navigation a good definition of opposite actions is generally straightforward (increase
temperature is the opposite of decrease temperature, and move left is the opposite of
move right). Nonetheless, general procedures may be defined to facilitate the situation
where a good opposite action may not be so apparent.

In [22] this was accomplished by defining the degree of opposition τ as a measure in
how far two actions a1 and a2 are opposite of each other in two different states si and
sj , respectively, such as

τ(a1|si , a2|sj ) = η ×

⎡
⎣1 − exp

⎛
⎝− |Q(si, a1) − Q(sj , a2)|

max
k

(Q(si, ak), Q(sj , ak))

⎞
⎠

⎤
⎦ , (2.7)

where the Q matrix contains the accumulated discounted rewards (which guide learn-
ing), and η is the state similarity and can be calculated based on state clustering or by a
simple measure such as

η(si, sj) = 1 −

∑
k

|Q(si, ak) − Q(sj , ak)|
∑
k

max (Q(si, ak), Q(sj , ak))
. (2.8)

In [22] limited examples are provided to intuitively verify the usefulness of this measure
in context of the reinforcement learning problems. However, online opposition mining
based on this measure, embedded inside the parent algorithm, has not been investigated.

2.3.2 Example for Using Opposition

There are numerous manifestations of oppositional relationships in both physical world
and the human society, too many to show an example for each. Instead, we will restrict
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ourselves to a random sampling scenario. We assume at least one optimal solution exists
within a given interval [a, b], and that we are given feedback regarding the distance of
a guess to the closest optimal solution. To make comparing the approaches easier we
group guesses into pairs.

It has been shown that for a problem with a single optima, where distance feedback
is given as evaluation criteria that guesses made in a specific dependent manner (in
contrast to purely random) have a higher probability of being closer to the optimal
solution [17,18].

Theorem 1 (Searchig in n-Dimensional Space). Let y = f(Xn) be any unknown
function with Xn = (x1, . . . , xn) such that xi ∈ [ai, bi], where ai, bi ∈ R. Also, let
y have some extreme values S = {s1, . . . , sn}, without loss of generality assumed the
minima of y. Generate X, Y based on a uniform distribution with respect to the interval
[ai, bi] and let X̆ = ai + bi − Xi. Then

Pr
(
‖X̆, S‖ < ‖Y, S‖

)
> Pr

(
‖Y, S‖ < ‖X̆, S‖

)

where ‖ · ‖ denotes the Euclidean distance.

Similarily, if X̆ = (0.5+X)%1 we can also achieve a similar expected behavior. Indeed
any low discrepancy sequence (see Chapter 3) should yield an improvement, in terms of
probability of making guesses closer to the optima, over purely random sampling. This
concept has been employed in quasi-Monte Carlo methods [8, 9, 15, 23], evolutionary
algorithms [7,11,12,17], particle swarms [13,14,16] and neural networks [3,6], to name
a few. The underlying concept is similar in all cases. Although in relation to opposition-
based computing, typically the focus is on pairs of samples (guess, opposite guess).

Table 2.1 shows probabilities of randomly generating a solution in 2, 5 and 10 di-
mensions over two opposition mappings, both compared to purely random sampling.
For each dimension we assume the interval is [0, 1], without loss of generality. The first
method, called “Mirror”, uses x̆i = 1−xi, and the second method, “Modulo”, is defined
as x̆i = (0.5 + xi)%1. To make comparing the approaches simpler, we examine pairs
of guesses. The table shows triples < P (min(X, Y ) = min(X̆, Y )), P (min(X, X̆) <
min(X, Y )), P (min(X, X̆) > min(X, Y ) > which compare the probability of two
guesses being equal, opposition-based technique is more desirable and random guesses
are better, respectively. The data was gathered by randomly selecting 1000 solutions,
where 10,000 guessing pairs were considered. The value provided represents the aver-
age over these experiments.

In all experiments, the non-random guessing yields a higher probability of being
closer to one of the optimal solutions. Although, as the number of optimal solutions
increases, this benefit decreases, especially for the Mirror opposition mapping. But, the
Mirror function seems to be the best of the two mappings when there only exists one
optimal solution.

In general for distance-based problems, given m optimal solutions represented as the
set S = {S1, ..., Sm}, the goal is to devise an opposition mapping such that if we let
g1 = d(X, s1,∗), g2 = d(Y, s2,∗) and g3 = d(Φ(X), s3,∗) then we desire the expected
value relationship,
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Table 2.1. Generating guesses where < P (min(X, Y ) = min(X̆, Y )), P (min(X, X̆) <
min(X, Y )), P (min(X, X̆) > min(X, Y ) > for variables X, Y . In most cases, a Modulo
function outperforms the Mirror function, but both show an improvement over purely random
sampling. See Chapter 3 for more on low-discrepancy sequences.

Number of optimal Solutions
Method 1 2 5

2 Dimensions
Mirror < 0.358, 0.358, 0.283 > < 0.344, 0.343, 0.313 > < 0.338, 0.338, 0.321 >

Modulo < 0.364, 0.364, 0.273 > < 0.355, 0.355, 0.291 > < 0.344, 0.344, 0.312 >

5 Dimensions
Mirror < 0.361, 0.361, 0.278 > < 0.346, 0.346, 0.309 > < 0.334, 0.334, 0.332 >

Modulo < 0.359, 0.359, 0.282 > < 0.353, 0.354, 0.293 > < 0.347, 0.347, 0.307 >

10 Dimensions
Mirror < 0.361, 0.362, 0.277 > < 0.345, 0.345, 0.310 > < 0.332, 0.332, 0.336 >

Modulo < 0.344, 0.360, 0.296 > < 0.343, 0.358, 0.299 > < 0.340, 0.356, 0.304 >

E[min(g1, g3)] < E[min(g1, g2)] (2.9)

where d(·, ·) is a distance function and s1,∗, s2,∗, s3,∗ are the solutions closest to each
of X, Y and Φ(X), respectively. Thus, the most desirable opposition map Φ∗ will be
one that maximizes the difference

Φ∗ = argmax
Φ

E[min(g1, g2)] − E[min(g1, g3)], (2.10)

although improved performance should be observed for any Φ satisfying equation 2.9.
Notice though that it is possible to design poor opposition mapping functions which
actually decrease the performance of the algorithm.

2.4 Opposition-Based Computing

Having introduced the foundational definitions for opposition-based computing, we
will now provide its definition as well as a first attempt at a classification strategy for
opposition-based computing methods in the following section.

Definition 9 (Opposition-Based Computing). We speak of opposition-based comput-
ing, when a computational method or technique implicitly or explicitly employs opposi-
tional relations and attributes either at its foundation (purely oppositional algorithms)
or to improve existing behavior of some parent algorithm (opposition-based extensions
of existing algorithms).

Situations in which opposition is inherent to the algorithm existence (for instance
switching between opposite alternatives in a decision-making scenario) is generally
termed implicit because the underlying concept tends to be overlooked in favor of im-
proving its behavior by other means. For example, adversarial searching using game
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tree searching typically follows a turn-based rule which alternates between two play-
ers. The focus of research in this area tends towards decreasing computational time via
improving the decision as to which nodes are to be explored instead of changing the un-
derlying adversarial structure of the algorithm. A similar concept also applies to other
competition-based methods and paradigms.

In contrast to implicit opposition, explicit forms occur when the goal is to utilize the
non-apparent or imperceptible opposition as a means of improving an existing, usually
non-oppositional algorithm. An example of this is the use of antithetic sampling to re-
duce the variance and improve convergence rate of Monte Carlo integration methods.
The integration method works without the use of any opposites, but by explicitly us-
ing antithetic variates we can observe improved behavior in terms of reduced variance
leading to faster convergence.

In both implicit and explicit algorithms it is possible to further determine the man-
ner in which opposites interact with respect to the scale [0 = cooperative, . . . , 1 =
competitive].

Definition 10 (Degree of Competition). Let C1, C2 ∈ C be arbitrary concepts where
C1 = Φ(C2). With inherent respect to the algorithm employing opposition, Σ, the
degree at which C1, C2 compete for use in Σ is given by the function ζ : C1, C2|Σ →
[0, 1]. Values of ζ closer to 1 indicate a more competive situation. For readability we
often drop the Σ, though it is implied.

Basically, this definition allows us to measure how cooperative or competitive the con-
sideration of two opposite guesses/concepts are. For a game tree search ζ → 1 (totally
competitive), and in case of antithetic variates we take an average of the results such
that ζ → 0 (totally cooperative).

We can also speak of the degree of competition between concepts which have a
degree of opposition < 1. The above definition changes slightly in that the requirement
of C1 = Φ(C2) is dropped and we adopt a subscript ζτ to represent the case that the
concepts are not true opposites.

Whether wishing to describe the degree of opposition or the degree of competition
between opposites, there may be a time componet to the interaction. In such cases the
goal is to describe the degree of opposition between aribitrary concepts C1, C2 ∈ C as
time (or algorithm iterations) t varies,

Υt(C1, C2) =
dΥ(C1, C2)

dt
. (2.11)

In a similar fashion we can describe the behavior of the degree of competition between
concepts with respect to algorithm Σ at time t as

ζt(C1, C2) =
dζ(C1, C2)

dt
. (2.12)

These definitions are very broad and there are many possible manifestations of
opposition that can arise. We provide possibilities below, but this is by no means a
comprehensive list. Of course, some of these areas overlap, and can be hybridized.
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2.5 OBC Algorithms

Opposition can be embedded into existing algorithms implicitly or explicitly. For in-
stance, the Proof Number Search (Chapter 6) is an example of implicit opposition
usage, whereas the ODE algorithm (Chapter 8) is an explicit implementation. In this
section we establish a general framework for explicit employment of OBC within exist-
ing methodologies. For this purpose we begin general definitions of OBC algorithms.

Definition 11 (Implicit OBC Algorithms). Any algorithm that incorporates opposi-
tional concepts without explicitly using type-I or type-II opposites is an implicit OBC
algorithm, or short an I-OBC algorithm.

The range of I-OBC techniques is large since they have been in use since quite some
time. For example, the well-known bisection method [4] for solving equations can
be considered an I-OBC algorithm since it shrinks the search interval by looking at
positive versus negative sign change. As well, using Bayes theorem [2] is an implicit
usage of oppositional relationship between the conditional probabilities p(A|B) and
p(B|A)5. A different, stronger version of implicit incorporation of oppositional con-
cepts is Bayesian Yin-Yang Harmony Learning which is based on the alternative view-
points of Bayes Rule (Chapter 10).

Definition 12 (Explicit OBC Algorithms). Any algorithm dealing with an unknown
function Y = f(X) and a known evaluation function g(X) (with higher values be-
ing more desirable) extended with OBC to calculate type-I or type-II opposite X̆ of

numbers, guesses or estimates X for considering max
(
g(X), g(X̆)

)
in its decision-

making is an explicit OBC algorithm, or short an E-OBC algorithm.

Generally, three classes of E-OBC algorithms can be distinguished:

1. Initializing E-OBC Algorithms – The concept of opposition is only used during
the initialization. The effect is a better start (initial estimates closer to solution
vicinity). Further, since it is done before the actual learning/searching begins, this
creates no additional overhead.

2. Somatic E-OBC Algorithms – This approach is based on modification of the body
of an existing algorithm. For instance, changing the weights in a neural network
during the learning based on integration of opposites weights changes the way the
algorithm works in every step. The effect of OBC will be much more visible since
opposition is considered in every iteration/episode/generation.

3. Initializing and Somatic E-OBC Algorithms – This class uses OBC both during
initialization and actual learning/search by combining the two previous approaches.

Algorithm 1 provides the generic structure of E-OBC algorithms. However, it seems that
the selection of an appropriate OBC algorithm and its specific steps directly depend on
the problem at hand and cannot be universally established.
5 The underlaying idea of Bayes theorem is looking at events from opposite perspectives

when analyzing a cause-effect problem. For example, if we have the prior probability of
cancer, p(cancer), and on smoking, p(smoking), then the conditional posterior probability
p(cancer|smoking) can be determined when we make an antipodal observation for the condi-
tional probability p(smoking|cancer).
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Algorithm 1. General pseudo code of initializing and somatic E-OBC algorithms. Dif-
ferent schemes may/shall be defined for specific parent algorithms.
1: Establish evaluation function g(·) (e.g. error, fitness, reward etc.)
2: Initialize parameters P={p1, · · · , pn} (e.g. weights, chromosomes etc.)
3: Find opposites P̆ = {p̆1, · · · , p̆n}

4: if First option then
5: Establish M = P ∪ P̆
6: Sort M in descending order with respect to g(·)
7: Choose the n first parameters m1, · · · , mn from M
8: end if

9: if Second option then
10: Run the algorithm with P
11: Run the algorithm with P̆
12: Choose the better one with respect to g(·)
13: end if

14: for each learning/search loop of the parent algorithm do
15: Calculate the estimate X based on schemes provided by the parent algorithm
16: if OBC-condition satisfied then
17: Calculate X̆
18: Perform the parent algorithm’s steps for X̆
19: Take X or X̆ based on max(g(X), g(X̆))
20: end if
21: end for

Line 1 in Algorithm 1 controls the frequency of relaying on opposition while the
parent algorithm runs. The following cases can be distinguished:

1. OBC condition always true – OBC can be applied during the entire learn-
ing/search, meaning that in all iterations/episodes/generations, proper opposite
quantities are calculated and comparisons with original quantities are conducted.
It could appear that in this way we can fully exploit the benefit of oppositional con-
cept. However, in some cases the additional overhead for calculation of opposite
entities can exceed its advantage; the extended algorithm becomes less effective
than its original version in terms of convergence speed (the accuracy will be at
least as high as the regular call without OBC due to max(g(X), g(X̆))).

2. OBC condition as a threshold – If we decide to activate OBC only for a fraction
of time, then the most straightforward condition for opposite estimates is to set a
threshold θ. If number of iterations/episodes/generations is less than θ, for instance,
then opposite estimates will be calculated and considered. This will eliminate the
overhead complexity but adds a degree of freedom which needs empirical knowl-
edge to be filled.

3. OBC condition as a probabilistic constraint – Opposite consideration could
be triggered by a probability function, which ideally is coupled with the evalu-
ation function g(X). Empirical and uniform probabilities may be used as well.
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Generally, probabilistic control of opposition frequency should be either a decreas-
ing or increasing function. For former, we rely on opposition rather at the begining
stages of learning/search and do not use it towards the end to suppress the compu-
tational overhead. For latter case, we increase the opposition frequency as learn-
ing/search progresses since, perhaps, we do not know the true opposites initially.
This would correspond to dynamic/online opposition mining.

In following subsections we try to categorize different OBC algorithms.

2.5.1 Search and Reasoning

Generally speaking, a search algorithm explores possible solutions to a problem in a
systematic manner with the goal of discovering some solution. Although, in many in-
stances the goal may not be obtainable in a reasonable amount of time. A popular
approach to deal with this scenario is to incorporate heuristic knowledge about the
problem or solution to guide the searching algorithm, instead of an uninformed search
which does not use any such knowledge. Reasoning is a process of searching for some
explanation for a belief or action. Therefore search and reasoning are closely coupled
processes. Examples include:

1. Implicit: adversarial search and reasoning (see Chapter 6).
2. Explicit: understanding or compromising between opposing arguments, consider-

ing opposite reasonings (see Chapter 5).

2.5.2 Optimization

The purpose of optimization algorithms is to maximize or minimize some real-valued
function. Without loss of generality, consider a minimization problem where we are
given a function f : A → R from some set A we seek to find an element a∗ ∈ A such
that f(a∗) ≤ f(a) ∀a ∈ A. Of course, this generalizes all searches, but the reader
should keep important aspects such as constraint satisfation, multiple objectives, etc in
mind. Examples include:

1. Implicit: Competitive coevolution (see Chapter 9).
2. Explicit: Using a low-discrepancy paired guessing strategy to improve diversity

and/or convergence rate (see Chapter 3).

2.5.3 Learning

Learning refers to the process of modifying behavior as a result of experiences and/or
instructions. In other words, given some initial hypothesis, learning allows for its mod-
ification as more data are observed. This contrasts with search and reasoning in that
learning is not concerned with explaining why the data is observed, only to perform
some action when it occurs. Often learning can be seen as an optimization problem,
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however, here we distinguish them because they do not always imply one another. Ex-
amples include:

1. Implicit: model selection using opposing viewpoints of a problem (see Chapter 10).
2. Explicit: considering two opposing actions or states during active learning (see

Chapter 11).

2.6 Summary and Conclusions

In this work, the general framework of opposition-based computing was introduced. Ba-
sic definitions of type-I and type-II opposites along with categorization of oppositional
algorithms were provided as well. Generally, OBC provides a straightforward frame-
work for extension of many existing methodologies as this has been demonstrated for
neural nets, evolutionary algorithms, reinforcement learning and ant colonies. The OBC
extensions of existing machine learning schemes seem to primarily accelerate search,
learning and optimization processes, a characteristic highly desirable for hyperdimen-
sional complex problems.

Opposition-based computing, however, encompasses multiple challenges as well.
First and foremost, a solid and comprehensive formalism is still missing. Besides, the
definition of opposition may not be straightforward in some applications such that the
need for opposition mining algorithms should be properly addressed in future investi-
gations. On the other side, the cost of calculating opposite entities can exceed the time
saving so that the OBC-extended algorithm becomes slower than the parent algorithm.
Extensive research is still required to establish control mechanisms to regulate the fre-
quency of opposition usage within the parent algorithms.

Due to our imperfect understanding of interplay between opposite entities, this work
will most likely be a preliminary investigation. Hence, more comprehensive elabora-
tions with a solid mathematical understanding of opposition remain subject to future
research.

The motivation of this chapter was not to just provide a framework for oppositional
concepts claiming to cover all possible forms of opposition (due to the diversity of
oppositeness this seems to be extremely difficult, if not impossible), but also to estab-
lish a general umbrella under which other, existing techniques can be classified and
studied. This should not be understood to just put a new label on existing methodolo-
gies and algorithms but to consciously comprehend the oppositional nature of problems
and exploit a-priori knowledge in light of inherent antipodality and complementarity of
entities, quantities and abstractions.
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